7 research outputs found

    Reverse Hall-Petch effect in ultra nanocrystalline diamond

    Full text link
    We present atomistic simulations for the mechanical response of ultra nanocrystalline diamond, a polycrystalline form of diamond with grain diameters of the order of a few nm. We consider fully three-dimensional model structures, having several grains of random sizes and orientations, and employ state-of-the-art Monte Carlo simulations. We calculate structural properties, elastic constants and the hardness of the material; our results compare well with experimental observations for this material. Moreover, we verify that this material becomes softer at small grain sizes, in analogy to the observed reversal of the Hall-Petch effect in various nanocrystalline metals. The effect is attributed to the large concentration of grain boundary atoms at smaller grain sizes. Our analysis yields scaling relations for the elastic constants as a function of the average grain size.Comment: Proceedings of the IUTAM Symposium on Modelling Nanomaterials and Nanosystems, Aalborg, Denmark, May 19-22 2008; to be published in the IUTAM Bookseries by Springe

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Mesoscale simulations of two model systems in biophysics: from red blood cells to DNAs

    No full text
    corecore